7 Advanced Counting Techniques

7.1 Recurrence Relations

1. a recurrence relation for the sequence {a,} is an equation that expresses a, in
terms of previous term(s) of the sequence

2. arecurrence relation together with initial condition(s) determine a recursive def-
inition of the sequence

3. recurrence relations model compound interest problems, population increase/decrease
problems, determining the moves in the Tower of Hanoi puzzle...

7.2 Solving Recurrence Relations

linear homogeneous recurrence relation of degree k with constant coefficients

1. this is a recurrence relation that is linear (each term on the right hand side has a}
for all i < mn — 1, versus containing quadratic terms like a?), homogeneous (each
term on the right hand side has some a; for some i < n — 1, versus containing
constants or terms without a;), it has degree & (a,, is defined in terms of a;, where
a; is not more than k steps away from a,, i.e. n—k < j <n), and the coefficients
of each a; are constants

2. the characteristic equation is obtained by replacing a, by r” in the recurrence
relation (and canceling by the lowest power of r in the characteristic equation,
one can solve it for r)

3. solutions are of the form a,, = r™, or linear combinations of the roots to power n

4. to solve a linear homogeneous recurrence relation find the characteristic equations
and solve for the characteristic roots of the recurrence, and then use a linear
combination of the roots together with the initial condition to find solutions (if
there are repetitions in the roots, then use the monomial n?, where 1 < j < the
multiplicity of the root —1): Theorem: If the characteristic equation has t roots
ri (1 < <t), each of multiplicity m; (3.'_, m; = k), then a sequence {a,} is a
solution of the given recurrence relation if and only iff

mi1—1 mo—1

an = (> )i+ (Y By + .
j=0 j=0

for n =0,1,2,..., where a;, 3; are constants that you can find using the initial
conditions.



nonlinear nonhomogeneous recurrence relation with constant coefficients

1.

2.

7.5

example: a, = 4a,,_s + 3n, with ag = 0,a; =1
a solution of a recurrence relation of the form
Up = C1ap_1 + 2092 + ... Chay_ + F(n),

(where F'(n) is a function of n) is the sum of a particular solution and a solution
of the associated linear homogeneous recurrence relation a,, = cya,_1 + c2a,_o +

e CrQp—p
there is no general method in finding a particular solution, however there are

techniques that work for certain types of functions F'(n):

e if F(n) is a polynomial b;n' + b,_1n'~! + byn + by, then a particular root
will be a polynomial of the same degree ¢ (see Example 10 and Homework
problem #25)

e if F'(n) is an exponential s”, then a particular root will be an exponential
times a constant: ¢-s" (see Example 11 and Homework problem #23)

e if F'(n) is a polynomial times and exponential, then the particular solution
is a combination of the two (see Theorem 6)

Inclusion-Exclusion

The principle of Inclusion-Exclusion: Let A, As, ..., A, be finite sets. Then

[AUAU. Al = D A= D JANA [+ ) JANANA = +(=1)" T AiNAaN. . NA,|.

1<i<n 1<i<j<n 1<i<j<k<n

ifn=2: |A1 UAQ’ = |A1‘ + |A2‘ — |A1 ﬂAg] and if n = 3:

|A1UAsUAy| = | Ay |+ | As| +|As| — [ A1 N Ay — | Ay N Ag| — | AL N As| + AL N Ap N As|



7.6 Applications of Inclusion-Exclusion

1. if we're counting the number N(P/, Py, ..., P!) of elements that do not have
properties P; (1 <1i < n) we can use the following: let A; be the subset counting
the elements that have the property P; (1 < i < n), and so the number of elements
without any properties P; is N —|A; U Ao U. .. A,,|, where N is the total number
of elements in the set (the value [A;NAsN. .. A, | is denoted by N(Py, Ps, ..., P,)
and it represents the number of elements that have the properties P; (1 <i < n))

2. The Sieve of Eratosthenes is used to find all the primes not exceeding a specified
positive integer n: list all the natural numbers between 2 and n — 1 (inclusive),
and then keep the first prime number but delete its multiples, then keep the
second prime number but delete its multiples, ... up to the largest prime number
that is less than or equal to n. To use the inclusion-exclusion principle: let P; be
the statement that the first prime number divides n, P, be the statement that
the second prime number divides n, ..., P, be the statement that the kth prime
number divides n (where the last prime number, k, is at most y/n). Then

N(PP,...P)) = (n—1)—N(P)—N(P) —...— N(P)
+ N(PP)+ N(PiP;) + N(P,P;) + ... N(Py_1 Py)
— N(PP,P;) —...— N(Py_sPe 1 Py)
+ N(PPR,P;P)...

3. The number of onto functions from a set with m elements to a set with n ele-
ments: if we let P, denote the property that the value & is not in the range (i.e.
there is no value z of the domain that gets mapped to k), then

N(P/P,...P) = N—N(P)-N(P)—...— N(P)
+ N(P.P)+ N(P.Py) + N(PyPs) + ... N(Pe_1 Py)
— N(P,PyP;) —...— N(P_yP_1P,)

+ N(PLRPP)...
= " =Cn,Dn-1)"+Cn,2)(n—-2)"—...+(=D)"'C(n,n — 1)1™

4. a derangement is a permutation of n objects that leaves no objects in their
original position (i.e. when permuting the elements, every element needs to
change its position). The number of derangements of n elements is D,, (let P; be
the permutation that fixes element i (1 < i < n), and count D,, = N(P/Py... P))
using the inclusion-exclusion principle))

D, =n!— G‘)(n—nw (Z)(n—Q)!— (Z)(n—3)!+...+(—1)"(Z>(n—n)!
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